Symmetric polynomial
From Wikipedia, the free encyclopedia
This article is about individual symmetric polynomials. For the ring of symmetric polynomials, see ring of symmetric functions.
In mathematics, a symmetric polynomial is a polynomial P(X1, X2, …, Xn) in n variables, such that if any of the variables are interchanged, one obtains the same polynomial. Formally, P is a symmetric polynomial, if for any permutation σ of the subscripts 1, 2, ..., n one has P(Xσ(1), Xσ(2), …, Xσ(n)) = P(X1, X2, …, Xn).Symmetric polynomials arise naturally in the study of the relation between the roots of a polynomial in one variable and its coefficients, since the coefficients can be given by polynomial expressions in the roots, and all roots play a similar role in this setting. From this point of view the elementary symmetric polynomials are the most fundamental symmetric polynomials. A theorem states that any symmetric polynomial can be expressed in terms of elementary symmetric polynomials, which implies that every symmetric polynomial expression in the roots of a monic polynomial can alternatively be given as a polynomial expression in the coefficients of the polynomial.
Symmetric polynomials also form an interesting structure by themselves, independently of any relation to the roots of a polynomial. In this context other collections of specific symmetric polynomials, such as complete homogeneous, power sum, and Schur polynomials play important roles alongside the elementary ones. The resulting structures, and in particular the ring of symmetric functions, are of great importance in combinatorics and in representation theory.
Contents
Examples
Symmetric polynomials in two variables X1, X2:On the other hand, the polynomial in two variables
Applications
Galois theory
Main article: Galois theory
One context in which symmetric polynomial functions occur is in the study of monic univariate polynomials of degree n having n roots in a given field. These n
roots determine the polynomial, and when they are considered as
independent variables, the coefficients of the polynomial are symmetric
polynomial functions of the roots. Moreover the fundamental theorem of symmetric polynomials implies that a polynomial function f of the n roots can be expressed as (another) polynomial function of the coefficients of the polynomial determined by the roots if and only if f is given by a symmetric polynomial.This yields the approach to solving polynomial equations by inverting this map, "breaking" the symmetry – given the coefficients of the polynomial (the elementary symmetric polynomials in the roots), how can one recover the roots? This leads to studying solutions of polynomials using the permutation group of the roots, originally in the form of Lagrange resolvents, later developed in Galois theory.
Relation with the roots of a monic univariate polynomial
Consider a monic polynomial in t of degree nNow one may change the point of view, by taking the roots rather than the coefficients as basic parameters for describing P, and considering them as indeterminates rather than as constants in an appropriate field; the coefficients ai then become just the particular symmetric polynomials given by the above equations. Those polynomials, without the sign , are known as the elementary symmetric polynomials in x1,…,xn. A basic fact, known as the fundamental theorem of symmetric polynomials states that any symmetric polynomial in n variables can be given by a polynomial expression in terms of these elementary symmetric polynomials. It follows that any symmetric polynomial expression in the roots of a monic polynomial can be expressed as a polynomial in the coefficients of the polynomial, and in particular that its value lies in the base field k that contains those coefficients. Thus, when working only with such symmetric polynomial expressions in the roots, it is unnecessary to know anything particular about those roots, or to compute in any larger field than k in which those roots may lie. In fact the values of the roots themselves become rather irrelevant, and the necessary relations between coefficients and symmetric polynomial expressions can be found by computations in terms of symmetric polynomials only. An example of such relations are Newton's identities, which express the sum of any fixed power of the roots in terms of the elementary symmetric polynomials.
Special kinds of symmetric polynomials
There are a few types of symmetric polynomials in the variables X1, X2, …, Xn that are fundamental.Elementary symmetric polynomials
Main article: elementary symmetric polynomial
For each nonnegative integer k, the elementary symmetric polynomial ek(X1, …, Xn) is the sum of all distinct products of k distinct variables. (Some authors denote it by σk instead.) For k = 0 there is only the empty product so e0(X1, …, Xn) = 1, while for k > n, no products at all can be formed, so ek(X1, X2, …, Xn) = 0 in these cases. The remaining n
elementary symmetric polynomials are building blocks for all symmetric
polynomials in these variables: as mentioned above, any symmetric
polynomial in the variables considered can be obtained from these
elementary symmetric polynomials using multiplications and additions
only. In fact one has the following more detailed facts:- any symmetric polynomial P in X1, …, Xn can be written as a polynomial expression in the polynomials ek(X1, …, Xn) with 1 ≤ k ≤ n;
- this expression is unique up to equivalence of polynomial expressions;
- if P has integral coefficients, then the polynomial expression also has integral coefficients.
Monomial symmetric polynomials
Powers and products of elementary symmetric polynomials work out to rather complicated expressions. If one seeks basic additive building blocks for symmetric polynomials, a more natural choice is to take those symmetric polynomials that contain only one type of monomial, with only those copies required to obtain symmetry. Any monomial in X1, …, Xn can be written as X1α1…Xnαn where the exponents αi are natural numbers (possibly zero); writing α = (α1,…,αn) this can be abbreviated to Xα. The monomial symmetric polynomial mα(X1, …, Xn) is defined as the sum of all monomials xβ where β ranges over all distinct permutations of (α1,…,αn). For instance one has- ,
The elementary symmetric polynomials are particular cases of monomial symmetric polynomials: for 0 ≤ k ≤ n one has
- where α is the partition of k into k parts 1 (followed by n − k zeros).
Power-sum symmetric polynomials
Main article: power sum symmetric polynomial
For each integer k ≥ 1, the monomial symmetric polynomial m(k,0,…,0)(X1, …, Xn) is of special interest. It is the power sum symmetric polynomial, defined as- Any symmetric polynomial in X1, …, Xn can be expressed as a polynomial expression with rational coefficients in the power sum symmetric polynomials p1(X1, …, Xn), …, pn(X1, …, Xn).
Complete homogeneous symmetric polynomials
Main article: complete homogeneous symmetric polynomial
For each nonnegative integer k, the complete homogeneous symmetric polynomial hk(X1, …, Xn) is the sum of all distinct monomials of degree k in the variables X1, …, Xn. For instance- Any symmetric polynomial P in X1, …, Xn can be written as a polynomial expression in the polynomials hk(X1, …, Xn) with 1 ≤ k ≤ n.
- If P has integral coefficients, then the polynomial expression also has integral coefficients.
An important aspect of complete homogeneous symmetric polynomials is their relation to elementary symmetric polynomials, which can be expressed as the identities
- , for all k > 0, and any number of variables n.
Schur polynomials
Main article: Schur polynomial
Another class of symmetric polynomials is that of the Schur
polynomials, which are of fundamental importance in the applications of
symmetric polynomials to representation theory.
They are however not as easy to describe as the other kinds of special
symmetric polynomials; see the main article for details.Symmetric polynomials in algebra
Symmetric polynomials are important to linear algebra, representation theory, and Galois theory. They are also important in combinatorics, where they are mostly studied through the ring of symmetric functions, which avoids having to carry around a fixed number of variables all the time.Alternating polynomials
Main article: Alternating polynomials
Analogous to symmetric polynomials are alternating polynomials: polynomials that, rather than being invariant under permutation of the entries, change according to the sign of the permutation.These are all products of the Vandermonde polynomial and a symmetric polynomial, and form a quadratic extension of the ring of symmetric polynomials: the Vandermonde polynomial is a square root of the discriminant.
No comments:
Post a Comment