Bialgebra
From Wikipedia, the free encyclopedia
This article needs additional citations for verification. (December 2009) |
Similar bialgebras are related by bialgebra homomorphisms. A bialgebra homomorphism is a linear map that is both an algebra and a coalgebra homomorphism.
As reflected in the symmetry of the commutative diagrams, the definition of bialgebra is self-dual, so if one can define a dual of B (which is always possible if B is finite-dimensional), then it is automatically a bialgebra.
Algebraic structures |
---|
Contents
Formal definition
(B, ∇, η, Δ, ε) is a bialgebra over K if it has the following properties:- B is a vector space over K;
- there are K-linear maps (multiplication) ∇: B ⊗ B → B (equivalent to K-multilinear map ∇: B × B → B) and (unit) η: K → B, such that (B, ∇, η) is a unital associative algebra;
- there are K-linear maps (comultiplication) Δ: B → B ⊗ B and (counit) ε: B → K, such that (B, Δ, ε) is a (counital coassociative) coalgebra;
- compatibility conditions expressed by the following commutative diagrams:
- Multiplication ∇ and comultiplication Δ[1]
- where τ: B ⊗ B → B ⊗ B is the linear map defined by τ(x ⊗ y) = y ⊗ x for all x and y in B,
- Multiplication ∇ and counit ε
- Comultiplication Δ and unit η[2]
- Unit η and counit ε
Coassociativity and counit
The K-linear map Δ: B → B ⊗ B is coassociative if .The K-linear map ε: B → K is a counit if .
Coassociativy and counit are expressed by the commutativity of the following two diagrams with B in place of C (they are the duals of the diagrams expressing associativity and unit of an algebra):
Compatibility conditions
The four commutative diagrams can be read either as "comultiplication and counit are homomorphisms of algebras" or, equivalently, "multiplication and unit are homomorphisms of coalgebras".These statements are meaningful once we explain the natural structures of algebra and coalgebra in all the vector spaces involved besides B: (K, ∇0, η0) is a unital associative algebra in an obvious way and (B ⊗ B, ∇2, η2) is a unital associative algebra with unit and multiplication
- ,
similarly, (K, Δ0, ε0) is a coalgebra in an obvious way and B ⊗ B is a coalgebra with counit and comultiplication
- .
- , or simply Δ(xy) = Δ(x) Δ(y),
- , or simply Δ(1B) = 1B ⊗ B;
- , or simply ε(xy) = ε(x) ε(y)
- , or simply ε(1B) = 1K.
- ;
- .
Examples
A simple example of a bialgebra is the set of functions from a group G to , which we may represent as a vector space consisting of linear combinations of standard basis vectors eg for each g ∈ G, which may represent a probability distribution over G in the case of vectors whose coefficients are all non-negative and sum to 1. An example of suitable comultiplication operators and counits which yield a counital coalgebra are- η is an operator preparing a normalized probability distribution which is independent of all other random variables;
- The product ∇ maps a probability distribution on two variables to a probability distribution on one variable;
- Copying a random variable in the distribution given by η is equivalent to having two independent random variables in the distribution η;
- Taking the product of two random variables, and preparing a copy of the resulting random variable, has the same distribution as preparing copies of each random variable independently of one another, and multiplying them together in pairs.
Other examples of bialgebras include the Hopf algebras.[3] Similar structures with different compatibility between the product and comultiplication, or different types of multiplication and comultiplication, include Lie bialgebras and Frobenius algebras. Additional examples are given in the article on coalgebras.
No comments:
Post a Comment