Linking number
From Wikipedia, the free encyclopedia
"Link number" redirects here. For the logic puzzle, see Numberlink.
The linking number was introduced by Gauss in the form of the linking integral. It is an important object of study in knot theory, algebraic topology, and differential geometry, and has numerous applications in mathematics and science, including quantum mechanics, electromagnetism, and the study of DNA supercoiling.
Contents
Definition
Any two closed curves in space, if allowed to pass through themselves but not each other, can be moved into exactly one of the following standard positions. This determines the linking number:linking number −2 | linking number −1 | linking number 0 | |||
linking number 1 | linking number 2 | linking number 3 |
Proof
This fact (that the linking number is the only invariant) is most easily proven by placing one circle in standard position, and then showing that linking number is the only invariant of the other circle. In detail:- A single curve is regular homotopic to a standard circle (any knot can be unknotted if the curve is allowed to pass through itself). The fact that it is homotopic is clear, since 3-space is contractible and thus all maps into it are homotopic, though the fact that this can be done through immersions requires some geometric argument.
- The complement of a standard circle is homeomorphic to a solid torus with a point removed (this can be seen by interpreting 3-space as the 3-sphere with the point at infinity removed, and the 3-sphere as two solid tori glued along the boundary), or the complement can be analyzed directly.
- The fundamental group of 3-space minus a circle is the integers, corresponding to linking number. This can be seen via the Seifert–Van Kampen theorem (either adding the point at infinity to get a solid torus, or adding the circle to get 3-space, allows one to compute the fundamental group of the desired space).
- Thus homotopy classes of a curve in 3-space minus a circle are determined by linking number.
- It is also true that regular homotopy classes are determined by linking number, which requires additional geometric argument.
Computing the linking number
Properties and examples
- Any two unlinked curves have linking number zero. However, two curves with linking number zero may still be linked (e.g. the Whitehead link).
- Reversing the orientation of either of the curves negates the linking number, while reversing the orientation of both curves leaves it unchanged.
- The linking number is chiral: taking the mirror image of link negates the linking number. The convention for positive linking number is based on a right-hand rule.
- The winding number of an oriented curve in the x-y plane is equal to its linking number with the z-axis (thinking of the z-axis as a closed curve in the 3-sphere).
- More generally, if either of the curves is simple, then the first homology group of its complement is isomorphic to Z. In this case, the linking number is determined by the homology class of the other curve.
- In physics, the linking number is an example of a topological quantum number. It is related to quantum entanglement.
Gauss's integral definition
Given two non-intersecting differentiable curves , define the Gauss map from the torus to the sphere byThis formulation of the linking number of γ1 and γ2 enables an explicit formula as a double line integral, the Gauss linking integral:
Generalizations
- Just as closed curves can be linked in three dimensions, any two closed manifolds of dimensions m and n may be linked in a Euclidean space of dimension . Any such link has an associated Gauss map, whose degree is a generalization of the linking number.
- Any framed knot has a self-linking number obtained by computing the linking number of the knot C with a new curve obtained by slightly moving the points of C along the framing vectors. The self-linking number obtained by moving vertically (along the blackboard framing) is known as Kauffman's self-linking number.
- The linking number is defined for two linked circles; given three or more circles, one can define the Milnor invariants, which are a numerical invariant generalizing linking number.
- In algebraic topology, the cup product is a far-reaching algebraic generalization of the linking number, with the Massey products being the algebraic analogs for the Milnor invariants.
- A linkless embedding of an undirected graph is an embedding into three-dimensional space such that every two cycles have zero linking number. The graphs that have a linkless embedding have a forbidden minor characterization as the graphs with no Petersen family minor.
See also
Notes
- This follows from the Jordan curve theorem if either curve is simple. For example, if the blue curve is simple, then n1 + n3 and n2 + n4 represent the number of times that the red curve crosses in and out of the region bounded by the blue curve.
References
- A.V. Chernavskii (2001), "Linking coefficient", in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
- − (2001), "Writhing number", in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
No comments:
Post a Comment